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Abstract 

Background: Predicting the methane percentage of biogas is 

necessary for selecting the optimized technologies of using landfill 

biogas for energy. The aim of this study was to predict of methane 

fraction in biogas from landfill bioreactors by Artificial Neural 

Network (ANN) modeling. 

Methods: In this study, two different systems were applied to predict 

the methane fraction in landfill gas as a final product of anaerobic 

digestion, in system I (C1), the leachate generated from a fresh-waste 

reactor was drained to recirculation tank, and recycled. In System II 

(C2), the leachate generated from a fresh waste landfill reactor was fed 

through a well-decomposed refuse landfill reactor, and at the same 

time, the leachate generated from a well-decomposed refuse landfill 

reactor recycled to a fresh waste landfill reactor. We monitored the 

systems for 6 months, after which we modeled the methane fraction in 

landfill gas from the bioreactors using artificial neural networks. The 

leachate specifications were used as input parameters. Leachate 

samples were collected every 7 days from effluent port of each reactor. 

COD and NH4 were determined according to the standard methods 

(2005). The pH value was measured by a portable digital pH meter 

(Salemab, Iran).  

Results: There is very good agreement in the trends between predicted 

and measured data. R values are 0.991 and 0.993, and the obtained 

mean square error values are 1.046 and 2.117 for training and test 

data, respectively.  

Conclusions: ANN based approaches can be considered as a 

compromising approach in landfill gas prediction problem and can be 

used to optimize the dimensions of a plant using biogas for energy (i.e. 

heat and/or electricity) recovery and monitoring system. 
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Introduction 

Landfill gas (LFG) is generated during the natural process 

of bacterial decomposition of organic material contained in 

municipal solid waste (MSW) landfills.1 By volume, LFG is 

about 50 percent methane and 50 percent carbon dioxide and 

water vapor.2 It also contains small amounts of nitrogen, 

oxygen, hydrogen, less than 1 percent no methane organic 

compounds (NMOCs), and trace amounts of inorganic 

compounds.3 LFG can be an asset when it is used as a source of 

energy to create electricity or heat.4 It is classified as a 

medium-BTU gas with a heating value of 350 to 600 BTU per 

cubic foot, approximately half that of natural gas. LFG can 

often be used in place of conventional fossil fuels in certain 

applications.5 It is a reliable source of energy because it is 

generated 24 hours a day, 7 days a week. By using LFG to 

produce energy, landfills can significantly reduce their 

emissions of methane and avoid the need to generate energy 

from fossil fuels, thus reducing emissions of carbon dioxide, 

sulfur dioxide, nitrogen oxides, and other pollutants from fossil 

fuel combustion.6,7 A number of different technologies have 

recently been studied to determine the best use of biogas, 

however, to choose optimize technologies of using biogas for 

energy recovery it is necessary to monitor and predict the 

methane percentage of biogas.2 Landfill methane models are 

tools used to predict methane generation over time from a mass 

of land filled waste. These models are used for sizing landfill 

gas (LFG) collection systems, evaluations and predictions of 

LFG energy uses, and regulatory purposes.8,9 Compared to 

other alternatives (such as installation of a full-scale LFG 

recovery system or the use of test wells and the performance of 

a pump test program), models have advantages in terms of low 

cost and relatively rapid results.10 

Significant development in the mechanistic modeling of 

anaerobic digestion process using mass balance principles and 

reaction kinetics has been observed.11 The main advantages of 

these process models are that, they are based on the underlying 

physical process and the results obtained from these process 

models generally provide a good understanding and 

interpretation of the system.11 The estimation of some 

parameters requires expertise and facilities, the absence of 

which hinders the preciseness of the model and limits its 

application and reliability.12 On the contrary, black box models 

such as Artificial Neural Networks (ANNs) has shown to have 

distinctive advantage.13 ANNs are now used in many areas of 

science and engineering and considered as promising tool 

because of their simplicity towards simulation, prediction and 

modeling.14 The advantages of ANNs are that the mathematical 

description of the phenomena involved in the process is not 

required; less time is required for model development than the 

traditional mathematical models and prediction ability with 

limited numbers of experiments.14 Application of ANNs to 

solve environmental engineering problems has been reported in 

many articles. ANNs were applied in biological wastewater 

treatment and physicochemical wastewater treatment.15 An 

ANN–genetic algorithm-based approach was developed to 

predict NOx emission of a pulverized coal-fired boiler and 

combustion parameter optimization to reduce NOx emission in 

flue gas.16 ANN-based vehicular exhaust emission models were 
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developed for predicting 8-h average CO concentrations, 

considering either meteorological and/or traffic characteristics 

as the input data.17 In air pollution modeling, neural network-

based (NN) models have been applied to predict various 

pollutant concentrations. Chelani et al constructed a tree layer 

NN model with a hidden recurrent layer to predict SO2 

concentration at three sites at Delhi.18 In their study, a 

multivariate regression model was also used for comparison 

with the results obtained by using NN model. Sahin et al 

applied multi layer Perceptron NN model to predict daily CO 

concentrations using meteorological variables as predictors for 

the European part of Istanbul, Turkey.19 An ANN model was 

developed for predicting the methane fraction in landfill gas 

originating from field-scale landfill bioreactors operated with 

and without landfill leachate (LFL) recirculation.20 The input 

parameters such as pH, alkalinity, chemical oxygen demand, 

sulfate, conductivity, chloride and waste temperature were used 

to predict the methane fraction in landfill gas. This paper 

proposes a multi layered ANN structure for future prediction of 

CH4 in Shahroud city landfill, Iran.  

Materials and Methods  

The landfill site is situated at the northeast of Shahrood city ,1 

km west of the W43 road, which forms the eastern bypass to 

Shahrood airport, about 7 km east of the airport (Figure 1). The 

Shahrood city Landfill is a 20-hectare site that is owned by the 

Shahrood municipality and was operated from 1986-2008. This 

landfill has 18 trenches which range in design from an open 

dump without cover layer to a semi sanitary landfill with 

intermediate and final cover layer. Each trench is 

approximately 0.8 ha in area and 9 m high, with side slopes at a 

4:1 grade. 

Figure 1. Schematic map of Iran and Shahroud city 

The refuse in this study was collected from a trash in the 

Shahroud sanitary landfill site, Shahroud, Iran. Bulky wastes, 

Plastic bags and massive inorganic wastes were removed in the 

laboratory. All of the waste were then shredded and mixed to 

avoid leachate preferential flow in simulated landfill columns. 

The waste composition was as follows (by weight): Kitchen 

waste, 74.5±5.3%; paper, 10.3±2.4%; plastic, 9.3±0.6%; fabric, 

3.2±0.2%; metal, 0.5±0.05%; and others, 2.2±0.5%. The well-

decomposed refuse was excavated from an old bioreactor 

landfill cell with a more than 15 years landfill age in the 

Shahroud landfill site. Well-decomposed refuse was defined 

here as the refuse that had been taken through its various stages 

of anaerobic degradation and exhausted of its methane-

producing potential. The content of organic matter and total 

nitrogen was respectively less than 5% and 0.3% for the well-

decomposed refuse. The refuse was commingled and shredded 

into 2-5 cm pieces. Experiment data collected were thus used 

for predicting the methane percentage profile of the gas 

extraction well using the ANN. The input parameters to the 

model were leachate COD, pH, NH4-N and time, while the 

output parameter was the methane percentage of the LFG.  

We used two types of reactors in this study; a simulated 

landfill reactor and an activated sludge reactor. The simulated 

landfill reactor made of Plexiglas has a diameter of 30 cm and 

height 110 cm (volume of 77.7 L). The reactor was wrapped 

with heat insulating materials to prevent temperature 

redistribution between the reactors and the surrounding 

environment. The aerobic-activated sludge reactor made of 

Plexiglas had a working volume of 8.65 L (diameter of 10 cm). 

The simulated reactors keep at 33±5 °C. 

Leachate samples were collected every 7 days from 

effluent port of each reactor. COD and NH4 were determined 

according to the Standard Methods (2005). The pH value was 

measured by a portable digital pH meter (Salemab, Iran).  

Artificial neural networks are known for their ability of 

learning, simulation and prediction of data. The inspiration of 

using neural network came from the biology of human brain.14 

Disadvantage of artificial neural network is its “black box” 

nature. The individual relations between the input variables and 

the output variables are not developed by engineering judgment 

so that the model tends to be a black box.15 Further there is 

greater computational burden and proneness to over fitting and 

the sample size has to be large.16 The network consists of 

numerous individual processing units called neurons and 

commonly interconnected in a variety of structures. The 

strength of these interconnections is determined by the weight 

associated with neurons.16 The multilayer feed-forward net is a 

parallel interconnected structure consisting of input layer and 

includes independent variables, number of hidden layers and 

output layer. In this study, a three-layered back propagation 

neural network with tangent sigmoid transfer function (Tansig) 

at hidden layer and a linear transfer function (Purelin) at output 

layer was used. The back propagation algorithm was used for 

network training. Neural Network Toolbox V4.0 of MATLAB 

mathematical software was used for methane fraction 

prediction. Data sets were obtained from our study and were 

divided into input matrix [p] and target matrix [t].  

The monitoring data (leachate COD, pH and NH4+-N and 

Time) was designed to meet the requirements of training and 

testing the ANN. To ensure that all variables in the input data 

are important, principal component analysis (PCA) was 

performed as an effective procedure for the determination of 

input parameters. It was observed that all input variables were 

important. The data sets (65) were divided into training (one 

half=33), validation (one fourth=16) and test (one fourth=16) 

subsets. 

Results 

To determine the best back propagation (BP) training 

algorithm, ten BP algorithms were studied. Tangent sigmoid 

transfer function (Tansig) at hidden layer and a linear transfer 

function (Purelin) at output layer were used. In addition, 5 

neurons were used in the hidden layer as initial value for all BP 

algorithms. Table 1 shows a comparison of different BP 

training algorithms. The optimum number of neurons was 
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determined based on the minimum value of mean square error 

(MSE) of the training and prediction set.16 The optimization 

was done by using Levenberg–Marquardt back propagation 

algorithm (LMA) as a training algorithm and varying neuron 

number in the range 1–15. Figure 2 shows the relationship 

between number of neurons and MSE. Figure 3 shows the 

optimized neural network structure. The data sets were used to 

feed the optimized network in order to test and validate the 

model. Figure 4 shows a comparison between experimental 

CH4 production values and predicted values using the neural 

network model. Table 2 shows the weights between the 

artificial neurons produced by the ANN model used in this 

work. Table 3 shows the relative importance of the input 

variables calculated by eq.1 Table 4 shows the results of the 

sensitivity analysis for different combinations of variables. 

Discussion 

To determine the best BP training algorithm, ten BP 

algorithms were studied. Tangent sigmoid transfer function 

(Tansig) at hidden layer and a linear transfer function (Purelin) 

at output layer were used. In addition, 5 neurons were used in 

the hidden layer as initial value for all BP algorithms. Table 1 

shows a comparison of different BP training algorithms. LMA 

was able to have smaller MSE compared to other BP 

algorithms. So, LMA was considered the training algorithm in 

the present study. 
 

Table 1. Comparison of 10 back propagation algorithms with 5 neurons in the hidden layer 

Backpropagation (BP) algorithm Function 
Mean square error 

(MSE) 
Epoch 

Correlation 
coefficient (R

2
) 

Best linear 
equation 

Levenberg-Marquardt backpropagation trainlm 0.00812355 29 0.983 
y=0.931X + 

0.107 
Scaled conjugate gradient 
backpropagation 

trainscg 0.01545691 92 0.974 
y=0.974X + 

0.324 

BFGS quasi-Newton backpropagation trainbfg 0.017437 64 0.976 
y=0.942X + 

0.911 

One step secant back propagation trainoss 0.0314241 28 0.972 
y=0.932X + 

0.89 
Batch gradient descent traingd 0.431132 102 0.686 y=0.343X+11 
Variable learning rate back propagation traingdx 0.424411 24 0.711 y=0.326X+14 
Batch gradient descent with 
momentum 

traingdm 0.520082 99 0.704 
y=0.333X + 

21.7 
Fletcher–Reeves conjugate gradient 
back propagation 

traincgf 0.0232129 23 0.926 y=1.48X−0.326 

Polak–Ribi’ere conjugate gradient back 
propagation 

traincgp 0.0143372 102 0.968 
y=0.864X + 

0.21 
Powell–Beale conjugate gradient back 
propagation 

traincgb 0.0532745 36 0.964 
y=0.912X + 

1.47 

 

The optimum number of neurons was determined based on 

the minimum value of MSE of the training and prediction set.16 

The optimization was done by using LMA as a training 

algorithm and varying neuron number in the range 1-15. Figure 

2 shows the relationship between number of neurons and MSE. 

MSE was 0.302148 when one neuron was used and decreased 

to 0.000331 when 6 neurons were used. Increasing of neurons 

more than 6 did not significantly decrease MSE. Hence, 6 

neurons were selected as the best number of neurons. Figure 3 

shows the optimized neural network structure. It has three-layer 

ANN, with tangent sigmoid transfer function (Tansig) at 

hidden layer with 6 neurons and linear transfer function 

(Purelin) at output layer.  

The data sets were used to feed the optimized network in 

order to test and validate the model. Figure 4 shows a 

comparison between experimental CH4 production values and 

predicted values using the neural network model. The figure 

contains two lines, one is the perfect fit y=X (predicted 

data=experimental data) and the other is the best fit indicated 

by a solid line with best liner equation y=(1.003) p+0.682, 

correlation coefficient (R2) 0.991 and MSE 0.000318. This 

agrees well with the correlation coefficient reported in the 

literature—a correlation coefficient of 0.992 for prediction of 

methane from a landfill,21 0.998 for prediction of organic acid 

from a landfill,22 0.961 for prediction of volatile fatty acid from 

fresh anaerobic digested wastes,21 0.991 for total gas 

production from old wastes landfill and 0.985 for biogas 

production from solid wastes landfill.22 
 

 

Figure 2. Relationship between number of neurons and MSE 
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Figure 3. Optimized ANN structure 

Figure 4. Comparison between predicted and experimental values of the 
output 

In order to assess the relative importance of the input variables, 
two evaluation processes were used.21 The first one was based 
on the neural net weight matrix and Garson equation.21 He 
proposed an equation based on the partitioning of connection 
weights: 

 

where, Ij is the relative importance of the jth input variable 

on the output variable, Ni and Nh are the number of input and 

hidden neurons, respectively and Wis connection weight, the 

superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output 

layers, respectively and subscripts ‘k’, ‘m’ and ‘n’ refer to 

input, hidden and output neurons, respectively. 

Table 2 shows the weights between the artificial neurons 

produced by the ANN model used in this work. Table 3 shows 

the relative importance of the input variables calculated by eq. 1 

All variables have strong effect on CH4 production. The COD 

appears to be the most influential variable followed by 

recirculation time, pH and NH4+-N. The second evaluation 

process is based on the possible combination of variables.  

Performances of the groups of one, two, three and four 

variables were examined by the optimal ANN structure using 

the LMA with 6 hidden neurons. The input variables were p1 

(COD), p2 (recirculation time), p3 (pH) and p4 (NH4+-N). 
 

Table 3. The relative importance of the input variables 

Input variable Importance % 
COD 44.3 
Recirculation Time 22.1 
NH4

+-N 14.4 
pH 19.2 

 

 

Table 4. Evaluation of possible combinations of input variables 

Combination Mean square error (MSE) Epoch Correlation coefficient (R
2
) Best linear equation 

P1 0.5753 13 0.523 Y= 7.42X + 45 
P2 263.65 10 0.346 Y= 5.32X + 528 
P3 289.25 10 0.461 y=6.3X + 256 
P4 352.41 9 0.532 y=5.12X + 425 
P1 + P2 0.314256 13 0.423 y=2.39X+562 
P1 + P3 0.536214 9 0.412 y=0.779X+15.2 
P1 + P4 0.653625 9 0.416 y=0.678X + 11.5 
P2 + P3 0.396525 10 0.537 y=0.543X−1.36 
P2 + P4 0.465879 7 0.489 y=0.523X + 22.1 
P3 + P4 0.489652 5 0.546 y=0.662X + 1.5 
P1 + P2 + P3 0.115623 6 0.712 y=0.549X + 12.2 
P1 + P2 + P4 0.124569 9 0.679 y=0.632X + 7.2 
P2 + P3 + P4 0.146632 9 0.742 y=0.654X + 4.1 
P1 + P2 + P3 +P4 0.132656 10 0.616 y=0.236X + 19.1 
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Table 2. Weight matrix, weights between input and hidden layers (W1) and 
weights between hidden and output layers (W2). 

Neuron 

W1 W2 

Input variables 
Output (CH4 

Production %) 
Recirculati

on Time 
pH COD NH4

+-N 

1 0.4711 0.0911 -0.4512 0.4612 0.7479 
2 0.0534 -0.1732 0.1011 0.4311 -1.5625 
3 0.0651 0.0933 -0.0312 0.4712 0.979 
4 0.1812 0.6566 0.2667 0.4147 -0.8978 
5 0.7811 -0.9891 0.3212 0.6566 -0.8263 
6 0.0365 0.8965 1.1123 1.9635 1.7465 



Javid et al 

13       |        International Journal of Health Studies 2015;1(2) 

A three-layer back propagation neural network was 
optimized to predict the CH4 production from landfill site. The 
configuration of the back propagation neural network giving 
the smallest MSE was three-layer ANN with tangent sigmoid 
transfer function (Tansig) at hidden layer with 6 neurons, linear 
transfer function (Purelin) at output layer and Levenberg–
Marquardt back propagation training algorithm (LMA). ANN 
predicted results are very close to the experimental results with 
correlation coefficient (R2) of 0.991 and MSE 0.000318. The 
sensitivity analysis showed that all studied variables have 
strong effect on CH4 production. In addition, COD is the most 
influential parameter with relative importance of 44.3 %. ANN 
results showed that neural network modeling could effectively 
predict the behavior of the process.  

Table 4 shows the results of the sensitivity analysis for 
different combinations of variables. The sensitivity analysis 
showed that p1 (COD) was the most effective parameter among 
other variable in the group of one variable. The MSE (242.151) 
decreased up to 0.302536, which is the minimum value of the 
group of two variables when p1 (COD) was used in 
combination with p2 (recirculation time). The MSE (0.302536) 
decreased up to 0.112311, which is the minimum value of the 
group of three variables when p2 (recirculation time) was used 
in combination with p3 (pH) and p4 (NH4+-N). The best group 
performances according to number of parameters are 
highlighted in table 4. MSE values decreased as the number of 
variables in the group increased due to the contribution of all 
parameters (Table 4). It can be concluded that the COD is the 
most effective parameter. In addition, all variables have strong 
effect on CH4 production and it agrees well with the sensitivity 
analysis using Garson equation. 
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